| Write your name here Surname         | Other n       | names                    |
|--------------------------------------|---------------|--------------------------|
| Pearson Edexcel International GCSE   | Centre Number | Candidate Number         |
| Physics Unit: 4PH0 Paper: 2PR        |               |                          |
| Thursday 12 June 2014 – Time: 1 hour | Morning       | Paper Reference 4PH0/2PR |
| You must have:<br>Ruler, calculator  |               | Total Marks              |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box  $\boxtimes$ . If you change your mind about an answer, put a line through the box  $\boxtimes$  and then mark your new answer with a cross  $\boxtimes$ .

### Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

#### **Advice**

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 1 9 2 9 A 0 1 2 0

Turn over ▶



# **EQUATIONS**

You may find the following equations useful.

energy transferred = current 
$$\times$$
 voltage  $\times$  time

pressure 
$$\times$$
 volume = constant

frequency = 
$$\frac{1}{\text{time period}}$$

$$power = \frac{work done}{time taken}$$

$$power = \frac{energy\ transferred}{time\ taken}$$

orbital speed = 
$$\frac{2\pi \times \text{orbital radius}}{\text{time period}}$$

$$\frac{pressure}{temperature} = constant$$

$$force = \frac{change in momentum}{time taken}$$

$$E = I \times V \times t$$

$$p_1 \times V_1 = p_2 \times V_2$$

$$f = \frac{1}{T}$$

$$P = \frac{W}{t}$$

$$P = \frac{W}{t}$$

$$v = \frac{2 \times \pi \times r}{T}$$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

Where necessary, assume the acceleration of free fall,  $g = 10 \text{ m/s}^2$ .





## **Answer ALL questions.**

1 (a) Which of these is a unit for energy?

(1)

- A joule
- B kilogram
- C newton
- **D** watt
- (b) The diagram shows a cell connected to a lamp.



Use words from the box to complete the sentences.

Each word may be used once, more than once, or not at all.

(3)

| chemical   | electrical | liaht  | sound | thermal   | work |  |
|------------|------------|--------|-------|-----------|------|--|
| Circinicai | Cicciiicai | ligite | Joana | circiiiai | WOTK |  |

The cell converts \_\_\_\_\_\_energy into \_\_\_\_\_energy.

The lamp converts this energy into \_\_\_\_\_\_energy and \_\_\_\_\_energy.

(c) This is the Sankey energy diagram for a low energy lamp.



(i) Calculate the amount of thermal energy wasted in the lamp.

(1)

- (ii) State the equation linking efficiency, useful energy output and total energy input. (1)
- (iii) Calculate the efficiency of the lamp.

(2)

efficiency = .....

(Total for Question 1 = 8 marks)



| 2 | This q  | uest | tion is about temperature and pressure in gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|---|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | (a) A   | gas  | is heated in a container which has a constant volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|   | Th      | e pa | articles in the gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4)   |
|   |         | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)   |
|   | ×       |      | expand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|   | X       |      | hit the walls of the container harder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|   | ×       |      | move closer together                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|   | ×       | D    | have a lower average speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|   |         |      | be what happens to the average kinetic energy of particles as the temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ure   |
|   | de      | crea | ases from 10 K towards 0 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)   |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (-)   |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   | (c) (i) | Co   | nvert a temperature of 27 °C into kelvin (K).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)   |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      | temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K     |
|   | (ii)    | Th   | e gas in a cylinder has a pressure of 210 kPa at a temperature of 27°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|   | ( )     |      | Iculate the new pressure when the temperature of the gas rises to 81°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|   |         |      | The state of the s | (3)   |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |         |      | pressure =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . kPa |
|   |         |      | (Total for Question 2 = 7 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | arks) |



**3** (a) The graphs show oscilloscope traces produced by four different sounds. The oscilloscope settings are the same for each trace.

Which graph shows the trace for the loudest sound at the lowest frequency?

(1)

⊠ A

voltage



 $\mathbb{Z}$  B

voltage



**⋈** C

voltage



■ D

voltage



(b) The diagram shows the equipment used by a student to measure the speed of sound in air.



The student measures the distance between the front of the metal block and the microphone.

She then uses this method to measure the time taken for sound to travel from the metal block to the microphone.

- start the timer by hitting the metal block with the hammer
- stop the timer when the sound produced reaches the microphone
- record the time taken for sound to reach the microphone in milliseconds

The student repeats the experiment six times, changing the distance between the metal block and the microphone for each experiment.

The table shows her results.

| Distance<br>in m | Time<br>in ms |
|------------------|---------------|
| 0.62             | 1.8           |
| 0.80             | 2.4           |
| 1.00             | 3.0           |
| 1.20             | 3.8           |
| 1.38             | 4.2           |

(i) Use the student's results to plot a graph of distance against time and draw the straight line of best fit.

(5)



(ii) Use your graph to find the speed of sound in air and give the unit.

(3)

speed = ..... unit .....

| (iii) Suggest how the student could make this experiment valid (a fair test). | (1)    |
|-------------------------------------------------------------------------------|--------|
| (iv) Suggest two ways that the student could improve the quality of her data. | (2)    |
|                                                                               |        |
| (Total for Question 3 = 12 n                                                  | narks) |
|                                                                               |        |
|                                                                               |        |

4 (a) The diagram shows a solenoid with a soft iron core connected in an electric circuit.



(i) On the diagram, draw field lines to show the shape and direction of the magnetic field produced by the solenoid.

(3)

(ii) Explain the effect of the soft iron core.

(1)

(b) A solenoid with a steel core can be used as an electromagnet.

When the current is switched on, the electromagnet picks up some steel paper clips.

Explain why the steel paper clips remain attached to the steel core when the current is switched off.

(2)

(Total for Question 4 = 6 marks)



**5** The diagram shows parts of a transformer.



(a) The input voltage to the transformer is 230 V a.c.

The output of the transformer is 25 V a.c.

There are 100 turns on the secondary coil.

(i) Name the type of transformer shown in the diagram.

(1)

(ii) State the equation linking input (primary) voltage, output (secondary) voltage, primary turns and secondary turns.

(1)

(iii) Calculate the number of turns on the primary coil.

(2)

number of turns

| (b) Explain how a transformer works.  In your answer, you should include the reasons for using |        |
|------------------------------------------------------------------------------------------------|--------|
| • two coils                                                                                    |        |
| • the iron core                                                                                |        |
| an alternating supply                                                                          | (5)    |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |
| (Total for Question 5 = 9 n                                                                    | narks) |
|                                                                                                |        |
|                                                                                                |        |
|                                                                                                |        |

6 The photograph shows an investigation of static electricity.
A teacher rubs a balloon with a cloth so that the balloon gains a positive charge.
She then holds the balloon close to her head, and her hair rises.



| (a) Explain, in terms of moving charges, now the balloon becomes positively charged | (2) |
|-------------------------------------------------------------------------------------|-----|
|                                                                                     |     |
|                                                                                     |     |
| (b) Explain why the teacher's hair rises.                                           |     |
|                                                                                     | (2) |
|                                                                                     | (2) |
|                                                                                     | (2) |

| (c) Suggest why the charge remains on the balloon even when it is being held.      | (1)  |
|------------------------------------------------------------------------------------|------|
| (d) Suggest why the experiment does not work so well when the air is humid (damp). | (1)  |
| (Total for Question 6 = 6 ma                                                       | rks) |
|                                                                                    |      |
|                                                                                    |      |
|                                                                                    |      |
|                                                                                    |      |

| 7 | Cars have a number of features that make them safer in a collision.                                               |           |
|---|-------------------------------------------------------------------------------------------------------------------|-----------|
|   | (a) Apart from seat belts, name two safety features that reduce the risk of serious inju in a car crash.          | ry<br>(2) |
|   |                                                                                                                   | (=)       |
| 1 |                                                                                                                   |           |
| 2 |                                                                                                                   |           |
|   | (b) Photograph A shows a person wearing a seat belt.                                                              |           |
|   | seat belt  © WHO 2013                                                                                             |           |
|   | Photograph A                                                                                                      |           |
|   |                                                                                                                   |           |
|   | (i) Using ideas of momentum and force, explain how a seat belt reduces the risk                                   |           |
|   | (i) Using ideas of momentum and force, explain how a seat belt reduces the risk of serious injury in a car crash. | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   | (4)       |
|   |                                                                                                                   |           |
|   | of serious injury in a car crash.                                                                                 |           |
|   | of serious injury in a car crash.                                                                                 |           |
|   | of serious injury in a car crash.                                                                                 |           |
|   | of serious injury in a car crash.                                                                                 |           |
|   | of serious injury in a car crash.                                                                                 |           |

(ii) Photograph B shows a full-body harness used in a racing car.



Photograph B

Suggest why a full-body harness is used in a racing car, instead of an ordinary seatbelt.

(1)

(c) Photograph C shows a crash-test dummy in a car. The car has crashed into a concrete wall.



© Peter Ginter/Getty Images

# Photograph C

State what happens to the momentum of the car during the crash.

(1)

(Total for Question 7 = 8 marks)



| 8 | (a) State the equation linking momentum, mass and velocity.                                                                                                                                        | (1) |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | <ul><li>(b) A truck of mass 10 000 kg is moving with a velocity of 4.5 m/s.</li><li>A car of mass 1500 kg has the same momentum as the truck.</li><li>Calculate the velocity of the car.</li></ul> | (3) |

(Total for Question 8 = 4 marks)

velocity = ..... m/s

**TOTAL FOR PAPER = 60 MARKS** 





