www.focuscollege.lk +94 74 213 6666 FOCUS

Cambridge
OL IGCSE

Computer science

CODE: (0478)

Chapter 07
Algorithm design and

problem solving

www.focuscollege.lk +94 74 213 6666 FOCUS

7.1 The program development life cycle

The program development life cycle is divided into five stages: analysis, design, coding, testing and maintenance. This
chapter and Chapter 8 will discuss the four stages listed below:

» Analysis

» Design

» Coding

» Testing

7.1.1 Analysis

Abstraction and decomposition tools are essential in the analysis stage of problem-solving. Abstraction focuses on key
elements, discarding unnecessary details. Decomposition tools help identify program requirements, ensuring a clear
understanding of the problem's requwements and addressing any overlapping information.

o

A Figure 7.1 Road map and rail map

7.1.2 Design

The program specification from the analysis stage is used to show to how the program should be developed. When the
design stage is complete, the programmer should know what is to be done, this can be formally documented using
structure charts, flowcharts and pseudocode.

7.1.3 Coding and iterative testing

Iterative testing involves developing and modifying a program's modules through modular tests, ensuring they meet
the required performance standards.

7.1.4 Testing

The completed program or set of programs is run many times with different sets of test data. This ensures that all the
tasks completed work together as specified in the program design.

www.focuscollege.lk +94 74 213 6666 O

7.2 Computer systems, sub-systems and decomposition

Computer systems consist of software, data, hardware, communications, and people, and can be divided into sub-
systems for a single action. These systems can be large or small, and people often interact with multiple computer
systems in their daily lives. For example, an alarm program on a smartphone can be accessed from a large computer
system.

7.2.1 The computer system and its sub-systems

Computer systems are often divided into sub-systems, demonstrating their modular construction through top-down
design and flowcharts or pseudocode. Programmers develop these sub-routines as sub-routines.

Top-down design is the decomposition of a computer system into a set of sub-systems, then breaking each sub-system
down into a set of smaller sub-systems, until each sub-system just performs a single action.

7.2.2 Decomposing a problem

Any problem that uses a computer system for its solution needs to be decomposed into its component parts. The
component parts of any computer system are: » inputs — the data used by the system that needs to be entered while
the system is active

» Processes — the tasks that need to be performed using the input data and any other previously stored data

» Outputs — information that needs to be displayed or printed for the users of the system

» Storage — data that needs to be stored in files on an appropriate medium for use in the future.

7.2.3 Methods used to design and construct a solution to a problem

Solutions to problems need to be designed and developed rigorously. The use of formal methods enables the process to
be clearly shown for others to understand the proposed solution. The following methods need to be used by IGCSE
Computer Science students:

» Structure diagrams

» Flowcharts

» Pseudocode.

Structure diagrams

Structure diagrams can be used to show top-down design in a diagrammatic form. Structure diagrams are hierarchical,
showing how a computer system solution can be divided into sub-systems with each level giving a more detailed
breakdown. If necessary, each sub-system can be further divided.

Consider the alarm app computer system for a smart phone; this could be divided into three sub-systems, setting the
alarm, checking for the alarm time, sounding the alarm. These sub-systems could then be further sub-divided; a
structure diagram makes the process clearer.

www.focuscollege.lk

System

Sub-system 1

Sub-system 2

Sub-system 1.1

Sub-system 1.2

Flowcharts

A Figure 7.2 Basic structure diagram

Sub-system 3

+94 74 213 6666

Alarm app

FOCUS

Set alarm

Check time

—

Sound alarm

Set time Tum alarm anfoff

Play sound far twe
minutes

Check offisnooze

Reset/clear alarm

A Figure 7.3 Structure diagram for ala

A flowchart shows diagrammatically the steps required to complete a task and

the order that they are to be performed. These steps, together with the order,

are called an algorithm. Flowcharts are an effective way to communicate how

the algorithm that makes up a system or sub-system works.

Flowcharts are drawn using standard flowchart symbols.

Begin/End

Terminator flowchart symbols are used at the beginning and end of each

flowchart. (Figure 7.5)

Process

Process flowchart symbols are used to show

actions, for example, when values are assigned

to variables. If a process has been defined

elsewhere then the name of that process is

shown. (figure 7.6)

Input and output

The same flowchart symbol is used to show the input

of data and output of information. (figure 7.7)

Decision

Decision flowchart symbols are used to decide which

action is to be taken next; these can be used for

Process details
included in this
flowchart symibol

A Figure 7.6 Process symbaols

rmapp

'lIIHHH%HIIl

ETOP

l

Sort list

This symbol means

this process is
defined elsewhere

& Figure 7.5 Terminator symbols

A Figure 7.7 Symbol used to show input and symbel used to show output

selection and repetition/iteration. There are always two

outputs from a decision flowchart symbol. (figure 7.8)

Flow lines

Flowchart flow lines use arrows to show the direction of
flow, which is usually, but not always, top to bottom and

left to right. (figure 7.9)

—-

Baoth flow lines out of
a decision box should
be clearly labelled.

A Figure 7.9 Flow line

A& Figure 7.8 Decision symbol

www.focuscollege.lk +94 74 213 6666 FOCUS

Pseudocode

Pseudocode is a method of describing an algorithm using English key words like high-level programming language. It
provides meaningful names for data items but is not bound by strict syntax rules. Consistency in writing is essential for
easy understanding.

The pseudocode in this book is written in the following way to match the pseudocode given in the IGCSE Computer
Science syllabus and to help you understand the algorithms more easily:

» A non-proportional font is used throughout

» All keywords are written in capital letters

» All names given to data items and subroutines start with a capital letter

» Where conditional and loop statements are used, repeated or selected statements are indented by two spaces.

The pseudocode for an assignment statement

A value is assigned to an item/variable using the <—— operator. The variable on the left of the «— is assigned the

value of the expression on the right. The expression on the

right can be a single value or several values combined with ¥ 12ble 7.1 Mathematical operators

any of the following mathematical operators. Operator Action
. - Add
The pseudocode for conditional statements
| - | Subtract
When different actions are performed by an algorithm * Multiply
according to the values of the variables, conditional / Divide

statements can be used to decide which action should be Raise to the power

taken. There are two types of conditional statement: (. Group

1 a condition that can be true or false such as: IF .. THEN .. ELSE .. ENDIF
s ersiarsssrsrsssisssrsassiasssasasriarssarssarstatatasatsinrsarraans There are different ways that an IF condition can be set up:
! IF Age 18 : .
3 9 = : » use of a Boolean variable that can have the value TRUE or FALSE (see
THEN : Chapter 8 for details of Boolean variables). For example:

OUTPUT "Child" . R T e T e P LU TP P TP TU PR TP P

. : IF Found H

ELSE .

+ THEN
OQUTPUT "Adult" .

. : OQUTPUT "Your search was successful”

: ENDIF :

ELSE

. . ' QUTEUT "Your search was unsuccessful"
2 a choice between several different values, such as: CASE OF .. :

OTHERWISE .. ENDCASE ENDIF ..
: CASE OF Grade » comparisons made by using comparison operators, where comparisons are
! A" , OUTBUT "Excellent" : made from left to right, for example: A > B means 'A is greater than B

Comparisons can be simple or more complicated, for example:
"B" : OUTPFUT "Good"
"cn o ;. QUTPUT "Average" : IF ((Height > 1) OR (Weight > 20)) AND (Age < 70) AND :
(Age > 5) :
OTHERWISE OUTPUT "Improvement is needed"
THEN

! ENDCASE : :
R PP . OUTPUT "You can ride"
ELSE
IF ... THEN ... ELSE ... ENDIF :
For an IF condition the THEN path is followed if the condition is true and the OUTEUT "Too small, too young or too olde
ELSE path is followed if the condition is false. There may or may not be an ! ENDIF

ELSE path. The end of the statement is shown by ENDIF.

: OUTPUT

®

www.focuscollege.lk

+94 74 213 6666

FOCUS

Have a look at the algorithm below that checks if a percentage mark is valid and whether it is a pass or a fail. This makes
use of two IF statements; the second IF statement is part of the first ELSE path. This is called a nested IF.

INPUT PercentageMark

IF PercentageMark < 0 OR PercentageMark > 100 }

THEN
OUTFUT
ELSE

"Invalid Mark"

IF PercentageMark > 49

THEN
OUTFUT
ELSE
OUTPUT
ENDIF

npgss"

IlFailll

"Please enter a mark "

: ENDIF

CASE OF ... OTHERWISE ... ENDCASE

Arejected
percentage mark
must be either

less than zero or
greater than 100

J

R

This is a nested IF
statement, shown
clearly by the use
of a second level
of indentation. The
percentage mark
is only tested if it
is in the correct

range

¥ Table 7.2 Comparison operators

Operator Comparison

= Greater than

< Less than

= thual

== Greater than or equal
= Less than or equal
> . Mot equal

AND Both

OR Either

KOT h Mot

For a CASE statement the value of the variable decides the path to be taken. Several values are usually specified.
OTHERWISE, is the path taken for all other values. The end of the statement is shown by ENDCASE

Have a look at the algorithm below that specifies what happens if the value of
Choiceis 1, 2, 3 or 4.

: CASE OF Choice

|
.-
P
4

: ENDCASE

Answer
Answer
Answer

Answer

—

—

—

—

Numl
Numl
Numl
Numl

+ Num2
- Num2
* Num2

J Hum2

OTHEEWISE OUTPUT "Please enter a wvalid choice"

The pseudocode for iteration

When some actions performed as part of an algorithm need repeating this is called iteration. Loop structures are used
to perform the iteration.

Pseudocode includes these three different types of loop structure:

A set number of repetitions
A repetition, where the number of repeats is not
known, that is completed at least once:

A repetition, where the number of repeats is not
known, that may never be completed:

FOR .. TO .. NEXT
REFEAT .. UNTIL

WHILE .. DO ..
ENDWHILE

www.focuscollege.lk +94 74 213 6666

All types of loops can all perform the same task, for example displaying ten
stars:

: FOR Counter « 1 TO 10 = . rﬁ.FGR.._ NEXT
: _\l loop

: OUTPUT "#» :

! NEXT Counter :

! Counter « 0 — : [ARePEAT .

: REPEAT \\L UNTIL loop

: OUTPUT "+" 5

Counter + Counter + 1 ;

! UNTIL Counter > 9

Counter « 0 : rAmeE Do ..
! WHILE Counter < 10 DO : ENDWHILE loop
E OUTPUT "+" :

: Counter + Counter + 1

+ ENDWHILE

FOCUS

As you can see, the FOR ... TO ... NEXT loop is the most efficient way for a programmer to write this type of task as the

loop counter is automatically managed.

FOR ... TO ... NEXT loops

A variable is set up, with a start value and an end value, this variable is incremented in steps of one until the end value
is reached and the iteration finishes. The variable can be used within the loop so long as its value is not changed. This

type of loop is very useful for reading values into lists with a known length.

Counter starts at 1 and
l_ finishes at 10

FOR Counter <« 1 TO 10

OUTPUT "Enter Name of Student " .
: Array [see Chapter 8)
items StudentName[1]
to StudentName [10]
have data input

INFUT StudentMName[Counter]

FEEEEEEEEE RS

* NEXT

"
I e MmO

REPEAT ... UNTIL loop

This loop structure is used when the number of repetitions/iterations is not known, and the actions are repeated UNTIL

a given condition becomes true. The actions in this loop are always completed at least once. This is a post-condition

loop as the test for exiting the loop is at the end of the loop.

www.focuscollege.lk +94 74 213 6666 FOCUS

Eeiereassessiereessessiereessiesiesiessiesseseestesssesiestesssnenes e : -
! Total « 0 : F‘u’anables

: Mark « 0 — Total and

: Mark are both

: REPEAT T initialised to

. Total « Total + Mark : | zero.

H . A
E QOUTPUT "Enter value for mark, -1 to finish " : r— -
: INEUT Mark — - | At least one

! UNTIL Mark = -1 :—Lmarkle. entered.

WHILE ... DO ... ENDWHILE loop

This loop structure is used when the number of repetitions/iterations is not known, and the actions are only repeated
WHILE a given condition is true. If the WHILE condition is untrue then the actions in this loop are never performed. This
is a pre-condition loop as the test for exiting the loop is at the beginning of the loop.

r-T TTorTesTrT ST TTTR OTT OTTCTT TTTS TS ToRtTTRTTQ TTTT TTTR T TS TTT T TaTttttttTTa T TTTT OTTITIRCT
: Total « 0 :]anlythe

: OUTPUT "Enter value for mark, -1 to finish " : T'r‘?‘_r'e_"t_’LE_TQtal
: :| isinitialised to

E INPUT Mark E zero

: WHILE Mark <> -1 DO : d
: Total « Total + Mark Condition

: .. tested at start

. OUTPUT "Enter walue for mark, -1 to finish" of loop

: INPUT Mark : ~

» ENDWHILE

The pseudocode for input and output statements

INPUT and OUTPUT are used for the entry of data and display of information. Sometimes READ can be used instead of
INPUT but this is usually used for reading from files — see Chapter 8. Also, PRINT can be used instead of OUTPUT if a
hard copy is required.

INPUT is used for data entry; it is usually followed by a variable where the data
input is stored, for example:

: INFUT Name

! INPUT StudentMark :

OUTPUT is used to display information either on a screen or printed on paper;
it is usually followed by a single value that is a string or a variable, or a list of
values separated by commas, for example:

OUTPUT Name

R]
H

OUTEUT "Your name is ", Name

OUTPUT Namel, "aAli", Name3

www.focuscollege.lk +94 74 213 6666 FOCUS

7.3 Explaining the purpose of an algorithm

An algorithm sets out the steps to complete a given task. This is usually shown as a flowchart or pseudocode, so that
the purpose of the task and the processes needed to complete it are clear to those who study it. You will be able to
practise this skill as you become more familiar with writing and finding and correcting errors in algorithms.

7.4 Standard methods of solution

The ability to repeat existing methods is very important in the design of algorithms; when an algorithm is turned into a
program the same methods may be repeated many thousands of times.

You need to be able to use and understand these standard methods used in algorithms:
» Totaling

» Counting

» Finding maximum, minimum, and average (mean) values

» Searching using a linear search

» Sorting using a bubble sort.

7.4.1 Totaling

Totaling means keeping a total that values are added to.

P Total ¢ 0 e—m_—— : (Initialising
: —L Total to zero

: FOR Counter + 1 TO ClassSize

—

-,

Totalling the marks
in an array called
StudentMark

. Total « Total + StudentMark[Counter]

: NEXT Counter

7.4.2 Counting

Keeping a count of the number of times an action is performed is another standard method. For example, counting the
number of students that were awarded a pass mark.

: PassCount « O

: FOR Counter ¢« 1 TO ClassSize

Initialising
PassCount to

INPUT StudentMark ZEro

IF StudentMark = 50
Bersssrenasresaeransssnssssneensssssennassnanns

Counting the
number of passes

PassCount +« PassCount + I
+ NEXT Counter
E Count ¢« Count + 1
Counting is also used to count down until a certain value is reached, for example, checking the number of items in stock
in a supermarket:

www.focuscollege.lk +94 74 213 6666 FOCUS

R T Ty

: I,_C:I::-l..mting down

: NumberInStock ¢« NumberInStock - 1 _ :
: : iterns in stock
* IF HumberInStock = 20

®
"
s
- i
&
®
#

-
.
®
#

THEN

: CALL Recrder() :

L .
L N N

7.4.3 Maximum, minimum and average

Finding the largest and smallest values in a list are two standard methods that are frequently found in algorithms, for

example, finding the highest and lowest mark awarded to a class of students.

Initialising D Y

. : -~
maximum to the S MaximumMark ¢ 0 : Initialisin
lowest mark T - o g
possible + MinimumMark < 100 minimum to the
h ! FOR Counter « 1 TO CFL highest possible
: . A
[. IF StudentMark[Ccounter] = MaximumMark .
Calls data from an :
array [see Chapter 8] - THEN : -
called StudentMark : i .
udentMark) : MaximumMark ¢ StudentMark[Counter] : (Replacing the
- : ENDIF maximum mark
: . with a higher mark
: IF StudentMark[Counter] = MinimumMark g
* - _——_
: THEN :
. : ™
: MinimumMark < StudentMark[Counter] [’_ Replacing the
ENDIF minimum mark
| NEXT Counter : with a lower mark
- . -

If the largest and smallest values are not known, an alternative method is to set the maximum and minimum values to

the first item in the list. For example, using this method to find the highest and lowest mark awarded to a class of

students.

! MaximumMark ¢ StudentMark[1] : (Initialising minirum

» MinimumMark ¢ StudentMark[1] and maximum to the
! FOR Counter « 2 TO ClassSize : first mark

IF StudentMark[Counter] > MaximumMark

Starting the loop at
the second position in
the list.

.

. THEN

*

MaximumMark ¢ StudentMark[Counter]
! ENDIF
E IF StudentMark[Counter] < MinimumMark :
THEN :
: MinimumMark ¢ StudentMark[Counter] :
! ENDIF

! NEXT Counter :

10

www.focuscollege.lk +94 74 213 6666 FOCUS

Calculating the average (mean) of all the values in a list is an extension of the totalling method, for example, calculating
the average mark for a class of students

R Y

' Total « 0

: FOR Counter + 1 TO ClassSize

Total ¢« Total + StudentMark[Counter] : Calculating the

' average from the total
after the loop has
been completed

NEXT Counter

: Bverage « Total / ClassSize

7.4.4 Linear search

A search is used to check if a value is stored in a list, performed by systematically working through the items in the list.
There are several standard search methods, but you only need to understand one method for IGCSE Computer Science.
This is called a linear search.

For example, searching for a name in a class list of student names, where all the names stored are different:

R T LT CREETEP L Settingavariabl_e_

: OUTPUT "Please enter name to find " : Found, as a flag, using
E INPUT Name TRUE anq FALSE to

: indicate if the name

: Found ¢ FALSE : k_haE' been found or not

Counter « 1 - -
! REPEAT : Checking if the name

__:_______.«'-""" input matches a name

Lin the List

IF Name = StudentName[Counter]

.
R T ™

——
. THEN : .
: Found «— TRUE : (Setting the flag to
TRUE when a match
ELSE is found
Counter &« Counter + 1 -
! ENDIF -

Stopping the search
when a match is
found or the whole

list has been searched
_—y

UNTIL Found OR Counter > ClassSize

IF Found

THEN

Qutputting the

p05itiﬂn inthe list OUTPUT Name, " found at positiom ",

when a match is T Counter, " in the list."

found ELSE :
OUTPUT Name, " not found." :
: ENDIF

In this example, the search checks how many people chose ice cream as their favourite dessert, where several values in
the list can be the same.

11

www.focuscollege.lk

+94 74 213 6666 FOCUS

L R R R R R R R R R R R R R R R R S R R R TR SRS RN T

: ChoiceCount « 0

! FOR Counter « 1 TO Length

: IF "ice cream" = Dessert[Counter]

: THEN

ChoiceCount + ChoiceCount + 1

Checking ice cream
has been chosen

f Checking every item

: NEXT Counter

: OUTPUT ChoiceCount, " chose ice cream
. as their favourite dessert."

-t e e I

7.4.5 Bubble sort

L in the Llist

Sorting is a crucial process in organizing lists in a meaningful order, such as alphabetical or ascending/descending order,

which can enhance their usefulness, especially in IGCSE Computer Science. This method of sorting is called a bubble

sort.

7.5 Validation and verification

Computer systems use two methods for data entry: validation and coding. Validation ensures reasonable data input and

prevents data changes during entry, while coding ensures accurate input.

7.5.1 Validation

Validation is the automated checking by a program that data is reasonable before it is accepted into a computer system.

When data is validated by a computer system, if the data is rejected a message should be output explaining why the

data was rejected and another opportunity given to enter the data.

There are many different types of validation checks including:

» Range checks

» Length checks

» Type checks

» Presence checks
» Format checks

» Check digits.

Range check

A range check checks that the value of a
number is between an upper value and a
lower value. For example, checking that
percentage marks are between 0 and 100
inclusive:

: OUTPUT "Please enter the student's mark "

: REPEAT

; INPUT StudentMark

é IF StudentMark =« 0 OR StudentMark = 100
THEN

OUTPUT "The student's mark should be in the range
: 0 te 100, please re-enter the mark "

! ENDIF
UNTIL StudentMark »>= 0 AND StudentMark <= 100

12

www.focuscollege.lk +94 74 213 6666 FOCUS

Length check

A length check checks either:
» That data contains an exact number of characters, for example that a password must be exactly eight characters in
length so that passwords with seven or fewer characters or nine or more characters would be rejected for instance:

Pas=word has a \ .OUTPUT "Please enter your password of eight :
data type of string : characters * :
and LENGTH is . REPEAT ;

the pseudocode
operation that

returns a whole : IF LENGTH(Password) <> 8
number showing :

INFUT Password

the number of : THEN :
characters in the : OUTPUT "Your password must be exactly eight

IkE.tl'ir‘lg) : characters, please re-enter " :

: ENDIF ;

! UNTIL LENGTH(Password) = 8 :

» or that the data entered is a reasonable number of characters, for example, a family name could be between two and
thirty characters inclusive so that names with one character or thirty-one or more characters would be rejected.

Type check

A type check checks that the data entered is of a given data type, for example, that the number of brothers or sisters
would be an integer (whole number).

. OUTPUT "How many brothers do you hawve? " .

REPEAT

INFUT NumberOfBrothers

E IF NumberOfBrothers == DIV{(HumberOfBrothers, 1) :

: THEN :
OUTPUT "This must be a whole number, please re-enter"

ENDIF :

UNTIL NumberOfBrothers = DIV(HumberOfBrothers, 1) :

Presencecheck :---------r----------------------------r------I----------r-----------r------
. OUTPUT "Please enter your email address " :

A presence check checks to ensure that
REPEAT
some data has been entered and the value

has not been left blank, for example, an INPUT EmailRddress

email address for an online transaction : IF EmailAddress = "" :
must be completed. : THEN

OUTPUT "*=Required "
ENDIF

. T_TNTIL Emailiddress <= " :

13

www.focuscollege.lk +94 74 213 6666 O

Format check and check digit

A format check checks that the characters entered conform to a pre-defined pattern,

A check digit is the final digit included in a code; it is calculated from all the other digits in the code. Check digits are
used for barcodes, product codes, International Standard Book Numbers (ISBN) and Vehicle Identification Numbers
(VIN).

Check digits are used to identify errors in data entry caused by mistyping or mis-scanning a barcode. They can usually
detect the following types of error:

» An incorrect digit entered, for example, 5327 entered instead of 5307

» Transposition errors where two numbers have changed order for example 5037 instead of 5307
» Omitted or extra digits, for example, 537 instead of 5307 or 53107 instead of 5307

» Phonetic errors, for example, 13, thirteen, instead of 30, thirty.

7.5.2 Verification

Verification is checking that data has been accurately copied from one source to another — for instance, input into a
computer or transferred from one part of a computer system to another. Verification methods for input data include:
» Double entry

» Screen/visual check.

For double entry the data is entered twice, sometimes by different operators

A screen/visual check is a manual check completed by the user who is entering the data. When the data entry is
complete the data is displayed on the screen and the user is asked to confirm that it is correct before continuing.

7.6 Test data
7.6.1 How to suggest and apply suitable test data

Test data is essential for ensuring a solution's functionality. A set of test data includes all necessary data items for a
solution to function. Different sets of test data may be needed to thoroughly test a solution, as demonstrated in Activity
7.6 using 7 and 18 items.

Normal data is a set of test data used to verify program or algorithm solutions' functionality, ensuring they work as
expected and produce expected results.

Solutions also need to be tested to prove that they do not do what they are supposed not to do. In order to do this, test
data should be chosen that would be rejected by the solution as not suitable, if the solution is working properly. This
type of test data is called abnormal test data. (It is also sometimes called erroneous test data.)

When testing algorithms with numerical values, sometimes only a given range of values should be allowed. For

example, percentage marks should only be in the range 0 to 100. Our algorithm above should be tested with extreme
data

14

www.focuscollege.lk +94 74 213 6666 FOCUS

There is another type of test data called boundary data. This is used to establish where the largest and smallest values
occur.

7.7 Trace tables to document dry runs of algorithms

A thorough structured approach is required to find out the purpose of an algorithm. This involves recording and
studying the results from each step in the algorithm and requires the use of test data.

A trace table can be used to record the results from each step in an algorithm; it is used to record the value of an item
(variable) each time that it changes. The manual exercise of working through an algorithm step by step is called a dry
run.

7.8 Identifying errors in algorithms

Trace tables and test data can be used to identify and correct errors. Your completed trace table for Activity 7.14 should
look like this:

¥ Table 7.6 Completed trace table for flowchart

A B C X OUTPUT
0 0 100

1 400 400

2 800 BOO

3 1390

4 170

5 300

6 110

7 600

8 150

9 130

10 900 900

500 100

There is an errar as the smallest number, 110, has not been identified.

As this algorithm only works for numbers between 0 and 100; a better algorithm could look like this:

This algorithm is very similar and works for a much larger range of numbers, but it still does not work for every set of
numbers

In order to work for any set of numbers, the algorithm needs to be re-written to allow the largest and smallest numbers
to be tested against numbers that appear in any list provided. The provisional values set at the start of the algorithm
need to be chosen from the list. A standard method is to set both these provisional values to the value of the first item
input.

15

www.focuscollege.lk +94 74 213 6666 FOCUS

B and C 34 o the
farst walue ingut

A A+l

The counter & is

o ucn Lesited Tor @
it R = 107 instead of 10
.-_" OUTPUT B, C .-_")

& Figure 7.16 A better algarithm

A Figure 717 A much better algorithm

7.9 Writing and amending algorithms

There are a number of stages when producing an algorithm for a given problem:

1. Make sure that the problem is clearly specified — the purpose of the algorithm and the tasks to be completed
by the algorithm

2. Break the problem down in to sub-problems; if it is complex, you may want to consider writing an algorithm
for each sub-problem.

3. Decide on how any data is to be obtained and stored, what is going to happen to the data and how any results
are going to be displayed.

4. Design the structure of your algorithm using a structure diagram.
5. Decide on how you are going to construct your algorithm, either using a flowchart or pseudocode.

16

www.focuscollege.lk +94 74 213 6666 FOCUS

6. The text emphasizes the importance of creating an algorithm that is easily read and understood, requiring
precision in setting out conditions, using meaningful names for data stores, and considering the problem being
solved, rather than just focusing on readability.

7. Use several sets of test data (Normal, Abnormal and Boundary) to dry run your algorithm and show the results
in trace tables, to enable you to find any errors

8. If any errors are found, correct them and repeat the process until you think that your algorithm works
perfectly.

-:‘::.!u'!'.‘
Have a look at this structure diagram and flowchart for the ?

algorithm to select the largest, Max, and smallest, Min,
numbers from a list of ten numbers. This time the flowchart is
more easily readable than the structure chart

Max and Min
Enter values Check all values Output Max
and Min
Check for Max Check for Min

A Figure 7.18 Structure chart for Max and Min

17

A Figure 719 & more easily understandable flowehart for Max and Min

www.focuscollege.lk

+94 74 213 6666

Key terms used throughout this chapter

analysis - pari af the pragram development life eyele; a
pracess al investigation, leading to the specilication of what
& pragram is required Lo do

design — part of the program developrment lile cycle; uses
the program specilication fram the analysis stage 1o shaw
to haw the program should be developed

eading - part of the program develapment Lile cycle; the
wriling of the pragram or suite of programs

testing - part af the program develapment Lile eycle;
systlematic checks done an & pragram 1o make sure that it
warks under all condilions

abstraction - a method used in the analysis stage af

the program development Lile cycle; the key elements
required for the solution Lo the problem are kept and any
unnecessary details and information that are nol requined
are discarded

decomposition - a methad used in the analysis slage of
the program development lile cycle; a complex problem
1% braken down inba Smaller paris, which can then be
sub divided into even smaller parts that can be solved
more easily

top-down design - the breaking down af & camputer
syslem inlo & set ol sub-systerns, Lthen breaking each sub-
syslem down inta & st of smaller sub-systems, until sach
sub-system just perfarms a single action

inputs - the data used by the systerm Lhal needs to be
entered while the system is aclive

processes — the tasks that need o be performed by a
pragram using the inpul data and any other previausly
slared data

sutpul - information that needs to be displayed ar printed
for the users all Lhe Sf!btl‘l'l

storage — data thal needs 1o be stored in files on an
appropriale media lor use in the fulure

structure diagram - a diagram thal shows the design al
& computer systerm in & hisrarchical way, with each level
giving a more delailed breakdeown of the system inte sub-
syslems

flowehart - a diagram thal shows Lhe steps required lar &
task [sub-sysiern] and the arder in which the steps are to be
perlarmed

algarithm — an ordered s=i of steps o solve a prablem

paeudacode - a simple methad of showing an

algarithm; it describes what the slgorithm does by using
Englizh key words thal are very similar Lo those used in a
high-level programming language but without the strict
synbax rules

linear search - an algorithm thal inspects each ilem in &
List in turn to See il the em matches the value searched lar

bubible sart - an algorithm that makes mulliples passes
through a list eomparing each element with the next
elernent and swapping them. This conlinues until there iz a
pass whers 0o more Swaps are made

validation — automated checks carried out by a program
thal data i reasanable before it is aceepled inla & computer
syslem

werification — checking that data has been accurately
capied fram anather Ssource and inpul info a compuler
or transléerred from ane part aof a compuler Syslem o
another

&t of test data — all the ilems of data required bo work
through a salution

normal data - data thal is accepted by a program
abnormal data - data that is rejected by a program

extreme data - the largeslfsmallest data value that is
accepled by & pragram

boundary data - the largestfamallest data value that is
accepled by & program and the correspanding srmallest/
largest rejecied data valus

range check - a check that the value of a number =
between an upper value and a lower value

length check - & method used ba check thal the data
entered is & specilic number of characters long or that the
number of characters is between an upper value and &
lewer walue

type check - a check that the data enbered is of a specilic
typ=

presence check — a check that a data item has been
entered

formal check - a check that the characters enlered
canform lo a pre-defined paltern

eheck digit - an additianal digit appended to & number ta
check il the anlered number s arrar-Iree; check dig't 1% &
dala EI'IEI‘]I check and mal & dala iransmission check

18

FOCUS

www.focuscollege.lk +94 74 213 6666

Revision questions

1). (2023 Nov: 6)

01 DECLARE A[1:10] : STRING
02 DECLARE T : STRING

03 DECLARE C,L : INTEGER
04L+~10

O3FORC—1TOL

06 OQUTPUT "Please enter name "
07 INPUT A[C]

D8 NEXT C
OSFORC—T1TOL

10 FORL—1TO9

1 IF A[L] = AL+ 1]

12 THEN

13 T A[L]

14 AlL] — AL+ 1]
15 AlL+1]<T
16 ENDIF

17 NEXTL

TBNEXTC

1TGFORC—1TOL
20 QUTPUT "Name ", C,"is ", A[C]
2Z1NEXTC
(a) State the purpose of this pseudocode algorithm. [1]
(b) State four processes in this algorithm. [4]
(c) Meaningful identifiers have not been used in this algorithm.
Suggest suitable meaningful identifiers for:
The array:
A
The variables:
T
C
L [3]
(d) State two other ways the algorithm can be made easier to understand and maintain.
(2]
2). (2023 Nov: 8)
8 A programmer is designing an algorithm to calculate the cost of a length of rope.
e The program requirements are:

input two values: the length of rope in metres Length and the cost of one metre Cost
. perform a validation check on the length to ensure that the value is between 0.5 and 6.0 inclusive
e calculate the price Price
e output the price rounded to two decimal places.

Use the variable names given.

19

www.focuscollege.lk +94 74 213 6666 O

(a) State the name of the validation check. [1]
(b) Complete the flowchart for this algorithm.

| STOE
[6] (c) Give two different sets of test data for this algorithm and state the purpose of each set.
Set 1
Purpose
Set 2
Purpose [4]
(d) Complete the headings for the trace table to show a dry-run for this algorithm.
You do not need to trace the algorithm.

(3]

(e) Describe an improvement that should be made to the requirements for this algorithm.

(2]

3). (2023 Nov: 10)
Drama students put on a performance of a play for one evening. Seats in a small theatre can be booked for this
performance.

The theatre has 10 rows of 20 seats. The status of the seat bookings for the evening is held in the two-dimensional (2D)
Boolean array Evening[]

Each element contains FALSE if the seat is available and TRUE if the seat is booked.

Up to and including four seats can be booked at one time. Seats are allocated in order from those available. A row or
seat number cannot be requested.

The array Evening[] has already been set up and some data stored.

Write a program that meets the following requirements:
- counts and outputs the number of seats already booked for the evening
- allows the user to input the number of seats required
- validates the input
- checks if enough seats are available:
- if they are available:

20

www.focuscollege.lk +94 74 213 6666 O

- changes the status of the seats
- outputs the row number and seat number for each seat booked
- if they are not available:
- outputs a message giving the number of seats left or 'House full' if the theatre is fully booked.

You must use pseudocode or program code and add comments to explain how your code works. You do not need to
declare any arrays or variables; you may assume that this has already been done.

You do *not* need to initialise the data in the array Evening[]
All inputs and outputs must contain suitable messages. [15]

4) (2022 may: Paper 2:1) case study
In preparation for the examination candidates should attempt the following practical tasks by writing and testing a
program or programs.

Friends of Seaview Pier is an organisation devoted to the restoration and upkeep of a pier in the town. A pier is a
wooden structure that provides a walkway over the sea. The pier requires regular maintenance and the friends of the
pier need to raise money for this purpose.

Members of Friends of Seaview Pier each pay $75 per year, as a contribution to the pier's running costs. This entitles
them to free admission to the pier throughout the year. They can also volunteer to help run the pier, by working at the
pier entrance gate, working in the gift shop, or painting and decorating.

To provide additional income, the pier's wooden planks can be sponsored. A brass plaque, which contains a short
message of the sponsor's choice, is fitted to a plank on the pier, for a donation of $200.

Write and test a program or programs for the Friends of Seaview Pier:

- Your program or programs must include appropriate prompts for the entry of data. Data must be validated on entry.
- All outputs, including error messages, need to be set out clearly and understandably.

- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.
Task 1 - becoming a member of Friends of Seaview Pier

Set up a system to enable people to become members of Friends of Seaview Pier and for each new member enter:
- their first name and last name
- whether or not they wish to work as a volunteer
- if they choose to volunteer, identify the area from:
- the pier entrance gate
- the gift shop
- painting and decorating
- the date of joining
- whether or not they have paid the $75 fee.

21

www.focuscollege.lk +94 74 213 6666 O

All of this information needs to be stored using suitable data structures.
Task 2 - using the membership data

Extend the program in **Task 1** so that a list of the first and last names of members can be output in any of the
following categories:

- Members who have chosen to work as volunteers.

- Volunteers who would like to work at the pier entrance gate.

- Volunteers who would like to work in the gift shop.

- Volunteers who would like to help with painting and decorating tasks.

- Members whose membership has expired (they have not re-joined this year).

- Members who have not yet paid their $75 fee.

Task 3 - sponsoring a wooden plank

Add an additional option to the program in **Task 1** to enable the pier's wooden planks to be sponsored. Separate
data structures should be used to store the names of the individuals and the short messages they would like to have
written on their brass plaque. An output would display everything that was input for the sponsor to confirm. If errors
are found, the program should allow data to be re-entered. Once complete, the data is stored and the sponsor is
charged $200.

a). Describe the data structures you could have used in **Task 1**. Your description should include
types of data structure, names used for data structures, their uses and examples of sample

Data. [5]

b). Explain how you could change your program in **Task 1** to total all the money collected from
new members who have paid. [3]

c). Describe how data input in **Task 1** could be validated to find out if a new member wants to
work as a volunteer. [3]

d). Write an algorithm to show how your program completes Task 3 assuming the option to
sponsor a wooden plank has been chosen, using pseudocode, programming statements or a
flowchart. Details completed in Task 1 are not required. [5]

e). Explain how your program allows any one of the member or volunteer lists to be selected and
displayed (part of Task 2). Any programming statements used in your answer must be fully
Explained. [4]

Description Data Type

5). (2022 may:2)
Boolean | char Integer | Real String

Tick (V') one box in each row to identify the

most appropriate data type for each a single character from the keyboard

description. Only multiple characters from the keyboard

one tick (\/) per column only one of two possible values

(4]

only whole numbers

any number

6). (2022 may:3)

Give one piece of normal test data and one piece of erroneous test data that could be used to

22

www.focuscollege.lk +94 74 213 6666 FOCUS

validate the input of an email address.

State the reason for your choice in each case.

NOrmal test data.....ccocveereereee e e e
Reason.......cceevvevieeecenene.

Erroneous test data......ccoeeveenerineninierene s s

REASON.....iii et

(4]

7). (2022 may:4)

The flowchart shows an algorithm that should allow 60 test results to be entered into the variable
Score. Each test result is checked to see if it is 50 or more. If it is, the test result is assigned to the
Pass array. Otherwise, it is assigned to the Fail array.

(a) Complete this flowchart:

(6]

(b) Write a pseudocode routine that will check that each test result entered into the algorithm is

23

www.focuscollege.lk +94 74 213 6666

between 0 and 100 inclusive.

7). (2022 may:5)

The pseudocode represents an algorithm.

The pre-defined function DIV gives the value of the result of integer division.
For example, Y =9 DIV 4 gives the value Y =2

The pre-defined function MOD gives the value of the remainder of integer division.

For example, R =9 MOD 4 gives the valueR =1

First = (

Last + [

INPUOT Limit

FOR Counter #— 1 TO Limit
INFPUT Valus
IF Value == 100

Jalue DIV 100
lue MOD 10
IF First = Last
THEMN
DUTPUT Value

HEXT Counter
(a) Complete the trace table for the algorithm using this input data:
8, 66, 606, 6226, 8448, 642,747,77, 121

Counter Value First Last Limit

OUTPUT

(5]
(b) Describe the purpose of the algorithm.[2]

8). (2021 Paper2: 1) Case Study

A program is needed for a quiz to help younger students to practise their multiplication tables. There needs to be two

ways of using the quiz; testing and learning.

Testing: the student is given one attempt at answering each question and the score is calculated for the whole test.

Learning: the student is given up to three attempts to get their answer to each question correct. There is no scoring.

A student can choose which multiplication table, from 2 to 12, to use for the quiz. There are five questions in each quiz,

each question must use the chosen multiplication table and a different whole number (from 1 to 12) as the multiplier.

Write and test a program or programs for a multiplication tables quiz.

* Your program or programs must include appropriate prompts for the entry of data; data must be validated on entry.

24

www.focuscollege.lk +94 74 213 6666 O

* Error messages and other output need to be set out clearly and understandably.

* All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

Task 1 - Testing a student

Students enter their name and choice of multiplication table. Each question is displayed on the screen one at a time, for
example:

Question 1

2X7=

Students enter their answer and move on to the next question. A running total of correct answers (score) is kept. At the
end of the quiz the student's name and score are displayed with a personalised message related to the score, for

example:
Aarav your score is 5/5 Diya your score is 3/5
Well done full marks Have another practice

Task 2 - Student learning

Students enter their name and choice of multiplication table. Each question is displayed on the screen as in Task 1. If an
answer is correct, a personalised message containing the student's name confirms this, the quiz then moves to the next
question. If an answer is incorrect, a personalised message containing the student's name and a hint is displayed, for
example:

Aarav your answer is too large

Up to three attempts are offered to get each answer correct. After the third incorrect attempt, the correct answer is
displayed and the quiz moves on to the next question.

Task 3 - Varying the quiz

Modify Task 1 to allow students to choose how many questions they would like in the test and if they would like a
'mixed' set of questions. A 'mixed' set means that each question can be from a different multiplication table; from 2 to
12.

All variables, constants and other identifiers must have meaningful names.

(a) Identify the variable that you used to store the student's answer in Task 1. Give the most
appropriate data type for this variable. Explain how your program ensured that any data
entered for the answer was valid.

Variable

Data type
Validation
(4]

(b) Identify and give the data type of a different variable, that you could have used in Task 2.

State the use of this variable in Task 2.
Variable

Data type

Use

(3]

25

www.focuscollege.lk +94 74 213 6666

(c) Write an algorithm for Task 1, using either pseudocode, programming statements or a
Flowchart. [6]
(d) Explain how your program completed Task 3.
Include any programming statements that you have added to Task 1 and fully explain the
purpose of each statement. [4]
(e) Explain how you could alter Task 1 to change the quiz to:

e display three alternative answers for each question

e allow the student to choose one of these answers

(3]

9). (2021 Paper2: 2)

An algorithm has been written in pseudocode to:
- input 25 positive whole numbers less than 100

- find and output the largest number

- find and output the average of all the numbers

l
B &

—

(a) Give the line number for the statements showing:
Totalling

Counting

Range check

Calculating the average [4]

(b) State an example for each type of test data needed to test the input of the number:
Normal test data example

Erroneous/abnormal test data example

Extreme test data example

(3]

(c) The algorithm needs to be changed to include finding and outputting the smallest number input.
Describe how you would change the algorithm.

10). (2021 Paper2: 3)
Four pseudocode statements and three flowchart symbols are shown.

26

www.focuscollege.lk +94 74 213 6666

Draw a line from each pseudocode statement to its correct flowchart symbol.
Pseudocode statement Flowchart symbol

11). (2021 Paper2: 4)

This algorithm accepts weights of bags of cookies. Any cookie bag weighing between 0.9 and
1.1 kilograms inclusive is acceptable. Underweight bags weigh less than 0.9 kilograms and

overweight bags weigh more than 1.1 kilograms. An input of a negative number stops the process.

Then the total number of bags, the number of overweight bags and the number of underweight
bags weighed are output.
Accept +— 0
Quer « 0
Under +— O
QUTPUT "Enter weaight of first cookie bag"
INPUT BagWeight
WHILE BagWeight > 0
[F BagWeight > 1.1
THEN
Error «<— 1
ELSE
IF BagWeight < 0.9
THEN
Error +— 2
ELSE
Error +— 0
ENDIF
ENDIE
CASE Errocr OF

A

0 3 Accept ¢ Accept + 1

1 : Qver +— Qver + 1
2 : Under #— Under + 1
ENDCASE

CUTPUT "Weight of next bag?"
TNPUT BagWeight
EMDWHILE
Total <— Accept - Over - Under
CQUTPUT "WHumber of kbags weighed ", Total
CUTPUT "Number cverweight ", Over

QUTPUT "Number underweight ", Under

r

(a) Complete a trace table for the given algorithm using this input data: [7]
1.05,0.99,1.2,0.85,1.1, 0.9, 1.5, 0.95, 1.05, 1.00, 1.07, 0.89, —10

BagWeight | Accept | Over | Undesx

=1
-
H
a
(=]

Tatal OUTPUT

(b) There is an error in this algorithm.
Identify the error and write the corrected pseudocode statement.

(2]

27

FOCUS

www.focuscollege.lk +94 74 213 6666

28

